Using the one-versus-rest strategy with samples balancing to improve pairwise coupling classification
نویسندگان
چکیده
The simplest classification task is to divide a set of objects into two classes, but most of the problems we find in real life applications are multi-class. There are many methods of decomposing such a task into a set of smaller classification problems involving two classes only. Among the methods, pairwise coupling proposed by Hastie and Tibshirani (1998) is one of the best known. Its principle is to separate each pair of classes ignoring the remaining ones. Then all objects are tested against these classifiers and a voting scheme is applied using pairwise class probability estimates in a joint probability estimate for all classes. A closer look at the pairwise strategy shows the problem which impacts the final result. Each binary classifier votes for each object even if it does not belong to one of the two classes which it is trained on. This problem is addressed in our strategy. We propose to use additional classifiers to select the objects which will be considered by the pairwise classifiers. A similar solution was proposed by Moreira and Mayoraz (1998), but they use classifiers which are biased according to imbalance in the number of samples representing classes.
منابع مشابه
P65: Speech Recognition Based on Bbrain Signals by the Quantum Support Vector Machine for Inflammatory Patient ALS
People communicate with each other by exchanging verbal and visual expressions. However, paralyzed patients with various neurological diseases such as amyotrophic lateral sclerosis and cerebral ischemia have difficulties in daily communications because they cannot control their body voluntarily. In this context, brain-computer interface (BCI) has been studied as a tool of communication for thes...
متن کاملA new classification method based on pairwise SVM for facial age estimation
This paper presents a practical algorithm for facial age estimation from frontal face image. Facial age estimation generally comprises two key steps including age image representation and age estimation. The anthropometric model used in this study includes computation of eighteen craniofacial ratios and a new accurate skin wrinkles analysis in the first step and a pairwise binary support vector...
متن کاملWhich Is the Best Multiclass SVM Method? An Empirical Study
Multiclass SVMs are usually implemented by combining several two-class SVMs. The one-versus-all method using winner-takes-all strategy and the one-versus-one method implemented by max-wins voting are popularly used for this purpose. In this paper we give empirical evidence to show that these methods are inferior to another one-versusone method: one that uses Platt’s posterior probabilities toge...
متن کامل‘BALANCING AND SEQUENCING’ VERSUS ‘ONLY BALANCING’ IN MIXED MODEL U-LINE ASSEMBLY SYSTEMS: AN ECONOMIC ANALYSIS
With the growth in customers’ demand diversification, mixed-model U-lines (MMUL) have acquired increasing importance in the area of assembly systems. There are generally two different approaches in the literature for balancing such systems. Some researchers believe that since the types of models can be very diverse, a balancing approach without simultaneously sequencing of models will not yield...
متن کاملCoupling Second-Order Excitation-Emission Spectrofluorimetric Data with Standard Addition method to Quantify Carvedilol in Real Samples
Prediction using pure standards is expected to be biased whenever the slope of the calibration is affected by the presence of sample matrix. Moreover, in the presence of unknown spectral interferents, first-order algorithms like partial least squares cannot be used. In this study, a method for determination of carvedilol (CAR) in tablet and urine samples is proposed by excitation-emission fluor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computer Science
دوره 26 شماره
صفحات -
تاریخ انتشار 2016